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Abstract 

Recent popular claims surrounding virtual assistants suggest that computers will soon be able to 

hear our emotions. Supporting this possibility, promising work has harnessed big data and 

emergent technologies to automatically predict stable levels of one specific emotion, happiness, 

at the community (e.g., counties) and trait (i.e., people) levels. Furthermore, research in affective 

science has shown that non-verbal vocal bursts (e.g., sighs, gasps) and specific acoustic features 

(e.g., pitch, energy) can differentiate between distinct emotions (e.g., anger, happiness), and that 

machine-learning algorithms can detect these differences. Yet, to our knowledge, no work has 

tested whether computers can automatically detect normal, everyday within-person fluctuations 

in one emotional state from acoustic analysis. To address this issue in the context of happy 

mood, across three studies (total N = 20,197), we asked participants to repeatedly report their 

state happy mood, and to provide audio recordings—including both direct speech and ambient 

sounds—from which we extracted acoustic features. Using three different machine learning 

algorithms (neural networks, random forests, and support vector machines) and two sets of 

acoustic features, we found that acoustic features yielded minimal predictive insight into happy 

mood above chance. Neither multilevel modeling analyses nor human coders provided additional 

insight into state happy mood. These findings suggest that it is not yet possible to automatically 

assess fluctuations in one emotional state (i.e., happy mood) from acoustic analysis, pointing to a 

critical future direction for affective scientists interested in acoustic analysis of emotion and 

automated emotion detection. 
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(Not) Hearing Happiness: 

Predicting Fluctuations in Happy Mood from Acoustic Cues Using Machine Learning 

If you have been reading the popular press, you might have the impression that we are 

nearing a time in which computers will able to automatically hear emotions. Multinational 

corporations such as Amazon, Google, and Apple are working to roll out voice-based emotion 

recognition features to accompany virtual assistants such as Amazon Alexa (e.g., Knight, 2016; 

Vogels, 2018). Moreover, technology start-ups currently boast products such as in-car 

microphones that can detect drivers’ emotions (Affectiva, 2018) and virtual assistants that can 

appraise the user’s mood to recommend a certain restaurant or movie (Beyond Verbal, 2018). 

Developing automated, computerized methods to detect emotion through acoustic 

analysis would benefit affective scientists as well. The field is currently experiencing a 

technological revolution in which researchers aim to capture life as lived through smartphones 

and digital sensing devices (Harari, Lane, Wang, Crosier, Campbell, & Gosling, 2016; Mehl & 

Conner, 2013; Nelson & Allen, 2018). Yet, the current modal method for assessing emotions—

self-report—is problematic in that reporting one’s emotions can alter those emotions (e.g., 

Kassam & Mendes, 2013; Lieberman, Inagaki, Tabibna, & Crockett, 2011) and can introduce 

distortions when done repeatedly across time and context (e.g., contrast and decline effects; 

Baird & Lucas, 2011; Schwarz, 1999; Shrout et al., 2018). There are also pragmatic limits to the 

amount of emotion self-reports that people can complete in a given time period of interest (e.g., 

10 reports a day for two weeks; Kuppens, Oravecz, & Tuerlinckx, 2010). Furthermore, even in 

these intensive experience-sampling protocols, participants will at times fail to report their 

emotion. The implication is that using self-report to assess momentary emotion will at best yield 

an incomplete portrait of a person’s emotion during the time period of interest and at worst will 

result in some distortions when emotion is reported. 
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Acoustic analysis provides a particularly promising medium through which to explore the 

possibility that emotions can be assessed without self-report: Acoustic recordings can easily and 

unobtrusively be collected via smartphones—which nearly 80% of Americans now own (Pew 

Research Center, 2018)—and can be collected continuously throughout a time period of interest. 

Acoustic recordings are therefore less susceptible to issues of missing data compared to self-

report assessments or other forms of naturalistic data such as social media posts (e.g., a person 

may only Tweet twice in a given day, making it difficult to track their emotion between these 

time points). A method to automatically detect emotion from acoustic analysis would therefore 

provide an instant, near-ubiquitous window into people’s emotions for research purposes. 

To our knowledge, however, there have been no empirical tests of whether normal, 

everyday fluctuations in any specific emotional state can be detected through acoustic analysis in 

an automated manner (i.e., without intensive human effort). The purpose of the present 

manuscript is to test this question. We focused on one particular emotional state—happy mood—

because variability in mood (or valence) is widely considered to be a dimension underlying all 

other emotional experiences (Russell & Barrett, 1999; Watson & Tellegen, 1985). 

Leveraging Technology to Automatically Predict Happy Mood: Prior Promising Findings 

Two ongoing lines of work speak broadly to the goal of predicting fluctuations in happy 

mood through acoustic analysis: (a) work showing that big data methodologies other than 

acoustic analysis can be used to predict stable levels of happiness at the community (e.g., 

counties) or trait (i.e., people) level; and (b) work showing that acoustic analysis can be used to 

differentiate between distinct state (i.e., momentary) emotional experiences. We review both of 

these lines of work below. 

Predicting happiness at the community or trait level. Recent technological advances 

in big data methodologies other than acoustic analysis have allowed psychologists to 
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automatically predict stable levels of community and trait happiness. At the community level, 

Dodds and colleagues (2011) attempted to track the aggregate happiness of the United States by 

indexing the positivity of words used in 26.5 billion American Tweets; however, this study did 

not connect automated happiness ratings to a self-report criterion. Schwartz and colleagues 

(2013) overcame this issue by showing that aggregate self-reported happiness among inhabitants 

of 1,293 American counties correlated moderately (r = .31) with the relative positivity of words 

used in Tweets made by a separate sample of those counties’ inhabitants. 

At the trait level, Kosinski, Stillwell, and Graepel (2013) showed that self-reported 

happiness of 58,466 Facebook users correlated .17 with automated predictions made through 

machine learning analysis of these users’ Facebook likes. Similarly, Schwartz and colleagues 

(2014) showed that self-reported depression—which might be considered extremely low 

happiness—among 28,749 Facebook users correlated .39 with automated predictions made 

through machine learning analysis these users’ Facebook statuses.  

Differentiating between distinct state emotions via acoustic analysis. Affective 

scientists have long contended that emotions are communicated through the voice (e.g., Scherer, 

1986). Supporting this notion, recent work has shown that distinct emotions are conveyed 

through distinct non-verbal vocal bursts (e.g., Cordaro, Keltner, Tshering, Wangchuk, & Flynn, 

2016; Sauter, Eisner, Ekman, & Scott, 2010). For example, Sauter and colleagues (2010) found 

that vocal bursts are sufficient for emotions such as anger (conveyed with a growl), fear 

(conveyed with a scream), surprise (conveyed with a sharp inhalation), and amusement 

(conveyed with a laugh) to be recognized by both English speakers and members of the remote, 

isolated Himba society. Complementary work has shown that specific acoustic features (e.g., 

pitch, energy) can help distinguish speech utterances conveying distinct emotions such as anger 

and happiness (e.g., Banse & Scherer, 1996; Walbott & Scherer, 1986). 
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Recent work bridging affective science and computer science has further utilized 

multivariate machine learning to classify distinct emotional vocalizations based on acoustic cues. 

For example, Laukka, Neiberg, and Elfenbein (2014) used machine learning analysis of 30 

acoustic features to classify speech utterances made by professional actors as reflecting one of 11 

distinct emotions at above-chance levels. In a more naturalistic study, Karam and colleagues 

(2014) used machine learning analysis of 23 acoustic features extracted from phone 

conversations to accurately classify bipolar disorder patients as experiencing manic or depressed 

mood—mood states characterized by widely divergent psychological and physiological 

characteristics which might be expected to manifest in distinct vocal signatures (American 

Psychiatric Association, 2013). 

Our Focus: Predicting Fluctuations in State Happy Mood from Acoustic Analysis 

The present manuscript focused on a distinct theoretical question than the work reviewed 

above: Can fluctuations in one particular emotional state, happy mood, be predicted from 

acoustic analysis? This question differentiates our work from prior work predicting happiness at 

the community or trait level using big data methodologies other than acoustic analysis (e.g., 

Dodds et al., 2011, Kosinski et al., 2013; Schwartz et al., 2013; 2014), in that we aim to track 

moment-to-moment fluctuations in happy mood rather than stable levels of happiness within a 

community or person. This question also differentiates our work from prior work distinguishing 

between distinct state emotions via acoustic analysis of both vocal bursts (e.g., Cordaro et al., 

2016; Sauter et al., 2010) and speech utterances (e.g., Banse & Scherer, 1996; Karam et al., 

2014; Laukka et al., 2014), in that we aim to differentiate between levels of the same emotion 

(i.e., high vs. low happy mood) rather than between distinct emotions (e.g., anger and happiness). 

Although prior work in this domain gives us reason for optimism that we may be able to 

predict fluctuations in state happy mood from acoustic analysis, the differences outlined above 
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provide reasons for pause: It may be far more challenging to predict moment-to-moment 

variability in levels of happy mood, compared to predicting stable community or trait happiness, 

or compared to differentiating between distinct emotions. This is because the acoustic 

differences between the same individual experiencing high vs. low happy mood may be subtle 

(i.e., within-person differences) whereas we might expect two individuals who typically 

experience high vs. low happiness to differ in many ways that are detectable through big data 

analyses (i.e., between-person differences). We might also expect that distinct emotions such as 

anger and happiness produce widely divergent acoustic signatures, particularly when enacted by 

professional actors (e.g., Laukka et al., 2014). 

Nonetheless, determining whether it is possible to predict fluctuations in state happy 

mood from acoustic analysis would speak to the goal of automatically assessing emotion without 

self-report. Acoustic cues can be collected and analyzed from smartphone-based recordings in a 

manner that makes them amenable to automated assessment among smartphone users (which, as 

noted above, constitutes the majority of the population; Pew Research Center, 2018). In contrast, 

although the social media data used to predict stable community and trait happiness in prior work 

is amenable to automated analysis, most people do not Tweet frequently enough to provide 

sufficient data to use a machine learning model to reliably predict fluctuations in state happy 

mood. For example, if a person Tweeted at 8:14am and again at 3:45pm, it would be very 

difficult to predict their state happy mood at 11:00am or 7:00pm from the content of those two 

Tweets alone. In light of these issues, as well as the aforementioned limitations in self-reported 

emotion (e.g., Kassam & Mendes, 2011; Lieberman et al., 2011; Shrout et al., 2018), a method 

providing automated insight into fluctuations in happy mood from acoustic cues would be 

extremely useful. We therefore aimed to test whether fluctuations in state happy mood can be 

automatically predicted via acoustic analysis. 
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The Present Research 

We harnessed three independently collected samples to test whether fluctuations in state 

happy mood can be predicted from acoustic analysis. In each study, we took three steps to 

maximize our chances of successfully predicting state happy mood. First, we collected self-

reported state happy mood repeatedly over several days using intensive, smartphone-based 

experience-sampling (ESM). Given that ESM is seen as the gold standard for capturing people’s 

in vivo experiences (e.g., Conner, Tennen, Fleeson, & Barrett, 2009), we treated these self-

reports of state happy mood as a “ground-truth” criterion in our predictive analyses. 

Second, we collected audio recordings from participants which corresponded to the time 

at which these state happy mood reports were made. For each recording, we extracted a set of 

acoustic features that was tailor-made to detect emotion: The Extended Geneva Minimalist 

Acoustic Parameter Set (eGeMAPS; Eyben, Scherer, et al., 2016), which was derived by 

affective scientists based on prior theoretical and empirical links between acoustic features and 

emotion (e.g., Banse & Scherer, 1996; Scherer, 1986). 

Third, we used three distinct machine learning algorithms—neural networks, random 

forests, and support vector machines—to predict state happy mood from the acoustic features 

extracted from each recording. Compared to conventional regression, machine learning 

algorithms have multiple advantages, including (a) the ability to handle many predictors without 

overfitting and (b) the ability to fit nuanced models involving complex interactions among 

predictors and non-linear links between predictors and outcomes (e.g., Strobl, Malley, & Tutz, 

2009). Machine learning algorithms have recently been used to gain insight into difficult 

prediction-related psychological research questions (e.g., Joel, Eastwick, & Finkel, 2017; 

Laukka, Neiberg, & Elfenbein, 2014; Wang & Kosinski, 2018). 
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Across all studies we report how we determined our sample size, all data exclusions, all 

manipulations, and all measures in the study. Data, code, and materials have been made available 

on the OSF (https://osf.io/4pzf7/). 

Study 1 

Method 

Participants. Five-hundred seventy-five students from the University of British 

Columbia enrolled in the study in exchange for course credit. Seventy-three of these participants 

did not complete the experience-sampling phase, leaving a final sample size of 502 (76% 

women, Mage = 20.55, SD = 2.99, 41% East Asian, 23% European, 11% South Asian, 7% 

Southeast Asian, 4% Middle Eastern, 14% other). We recruited the maximum number of 

participants that we could during one academic semester given our university’s resources. 

Procedures for this study received ethical approval from the University of British Columbia 

Behavioural Research Ethics Board. 

Procedure. Participants completed an initial lab assessment during which they reported 

demographics and trait happiness, using the Subjective Happiness Scale (Lyubomirsky & 

Lepper, 1999; M = 4.81; SD = 1.08; α = .84). Next, in the experience-sampling portion of the 

study, participants were sent a survey link via text message during a randomly selected two-hour 

window between 10:00am and 8:00pm for six consecutive days. Participants were asked to 

complete each survey as soon as possible and were told to disregard the survey if they had not 

completed it by the time they received the next day’s survey. Each survey involved three tasks: 

reporting state happiness and making two audio recordings on a smartphone. These tasks were 

presented in a randomly determined order. 

State happiness. Participants reported the extent to which they felt happy, pleased, and 

content, which were averaged to form a composite (1 = “not at all”; 5 = “very much”; M = 3.18; 
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SD = .93; within-person ⍵ = .89; Barrett & Russell, 1998; Geldhof, Preacher, & Zyphur, 2014). 

Given that we were interested in predicting state happiness—rather than stable, dispositional 

happiness—happiness reports were centered within-person. Within-person-centered happiness 

reports were then rounded to the nearest integer, to yield a set of classification categories 

corresponding to each integer, which would in turn make it easier to interpret model accuracy (M 

= .01, SD = 0.75, range = -3 to 2). We collected a total of 1,963 within-person-centered 

happiness reports, which subsequently represented our primary criterion variable for each audio 

recording. However, in light of the possibility that acoustic features may be more diagnostic of 

raw happiness reports than within-person-centered happiness reports, we also tested models in 

which raw happiness reports were used as our criteria. 

Audio recordings. Participants were asked to make two recordings each day using their 

smartphone. In the first recording, they described the events of their day. In the second 

recording, they described what was occurring in a picture taken from the Thematic Apperception 

Test (TAT; e.g., a child conversing with his mother, who is in bed and appears to be ill; Murray, 

1943). Participants were asked to speak for approximately 60 seconds in each recording; 

compliance with these instructions was good on average (M = 58.05 seconds, SD = 14.76). 

Participants were asked to email each recording to an account associated with the study. 

Participants completed 3,931 unique audio recordings, for a response rate of 65%. Each 

audio recording was paired with a concurrent report of state happiness (i.e., two recordings per 

happiness report). Five audio recordings were excluded from analyses because we were not able 

to process them due to low audio quality (i.e., our acoustic software did not yield statistical 

output). This left effective sample size of 3,926 audio recordings paired with 2,272 experience-

sampling reports (i.e., one report for every 1-2 audio recordings; M = 7.82 recordings per 

participant out of 12 possible, SD = 3.30, range = 1-12). 
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For each audio recording, we used openSMILE (Eyben, Weninger, Gross, & Schuller, 

2013) to extract the 88 acoustic features included in the eGeMAPS (Eyben et al., 2016). The 

eGeMAPS includes summary statistics for a variety of acoustic features such as pitch, loudness, 

and tone (e.g., mean, standard deviation, maximum). Many of the acoustic features were highly 

correlated (e.g., openSMILE computes mean pitch, as well the 20th, 50th, and 80th percentile of 

the pitch distribution for each audio recording; with which mean pitch correlated .86 to .92). 

Although the 88 acoustic features in the eGeMAPS were selected based on their utility in prior 

work detecting emotion from acoustic cues, as well as their potential to index physiological 

changes in voice based on people’s emotional states, it is possible that in the current audio 

recordings (as well as those used in Studies 2 and 3) there was insufficient variability on some of 

these features to allow each of them to show sufficient statistical differentiation. 

Given the strong correlations observed between many acoustic features, we examined 

whether the 88 acoustic features could be represented by a more parsimonious set of underlying 

dimensions. We conducted parallel analysis and Velicer’s minimum average partial, and both 

tests indicated that a 17-factor solution best characterized the data. We subsequently performed 

exploratory factor analysis with oblimin rotation, which allows factors to be correlated, due to 

our expectation that acoustic features would be correlated with one another (see Table S1 in 

online supplement for factor loadings). We extracted 17 acoustic factors and saved each 

participant’s score for each factor, which subsequently represented our predictor variables for 

each audio recording. In this solution, the first three factors appeared to capture variability in 

loudness (factor 1), relative energy or amplitude (factor 2), and pitch (factor 3). 

Results 

Analytic overview. We used three machine learning algorithms to predict within-person 

fluctuations in happiness from acoustic cues: (a) random forests; (b) neural networks; and (c) 
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support vector machines. Each of these algorithms takes a set of input features (e.g., acoustic 

cues) and learns a mathematical function linking these input features to an outcome criterion 

(e.g., reports of momentary happiness). The exact mechanics of each algorithm differ somewhat. 

Random forests represent an ensemble of many decision trees, which subdivide the outcome 

criterion into its respective levels based on a series of decision rules (e.g., if pitch is above 

average, happiness is predicted to be 3 or greater on a Likert scale, and if loudness is also above 

average then happiness is predicted to be 5). Neural networks transform the values of each input 

feature multiple times in succession before arriving at a final prediction for the outcome; these 

transformations create what are called hidden layers of the neural network. Support vector 

machines create a series of planes in multidimensional space that maximize the distance between 

outcome criterion which belong to different classes (e.g., 3 vs. 4 on a Likert scale); these planes 

are called support vectors and are a function of a subset of the input features. We used the Scikit 

Learn package in Python to run each of these machine learning algorithms; more information on 

their implementation can be found in the Scikit Learn documentation (Scikit Learn Developers, 

2018a; 2018b; 2018c). Each algorithm also has several adjustable parameters. We left these 

parameters set to their default values in Scikit Learn, except where noted below (see Scikit Learn 

documentation for default values; random forests: http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html; neural 

networks: http://scikit-

learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_

network.MLPClassifier; support vector machines: http://scikit-

learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC).1 

                                                
1Random forests differ from neural networks and support vector machines in that it is an aggregate classification 
method, in which a series of decision trees are fit using different random subsets of the data, and the results are 
averaged, reducing the noise inherent to each individual decision tree and improving overall predictive accuracy. 
One can therefore adjust the number of decision trees which are included in each random forests analysis. In theory, 
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These algorithms have several advantages over conventional regression. First, they can 

handle many predictors at once without succumbing to model overfitting or multicollinearity. 

This is because each algorithm constructs a function linking the input features to the output 

criterion on one portion of the data (i.e., the training sample), before testing the predictive value 

of this function on a separate subset of the data (i.e., the testing sample) to maximize cross-

validation. Second, the algorithms can uncover complex relationships—including interactions 

among predictors and non-linear links between predictors and criterion—regardless of whether 

they are pre-specified by the researcher (i.e., a researcher does not have to enter an interaction 

term into a machine learning model in order for the algorithm to uncover that interaction). 

We carried out each machine learning analysis in the following manner: For each of the 

3,926 audio recordings in our data set, the corresponding within-person-centered state happiness 

report was the criterion variable, and the 17 acoustic factors were the predictor variables. Of the 

entire set of within-person-centered state happiness reports, 53% (2,075) were rounded to a score 

of 0 (i.e., average happiness), making this our baseline (i.e., chance) level of accuracy. This is 

because, if we constructed an algorithm to simply predict 0 for each recording (without using any 

acoustic information), it would achieve an accuracy of 53%. 

For the sake of completeness, we ran two additional analyses for each machine learning 

algorithm, including (a) one in which we used within-person-centered acoustic factor scores as 

our predictors rather than raw-score acoustic factors (for this model, we used the original within-

person-centered state happiness reports as criteria); and (b) one in which we used raw state 

                                                
random forests will perform better with a greater number of trees, because the results of each individual tree will be 
aggregated together, thereby canceling out noise inherent to any single tree, and arriving at a better overall 
prediction. Beyond a certain size, however, each additional tree has diminished marginal benefit, and very large 
numbers of trees can tax computer processing capacity (e.g., several of the analyses reported in this paper took more 
than 12 hours to complete). To determine the optimal number of trees to include in our random forests, we 
conducted a simulation study using our data (see pages 5-6 of online supplement). This simulation suggested that 
algorithm performance improved marginally as the number of decision trees increased to 200, before plateauing. We 
therefore set the number of trees to 200 for all subsequent random forests analyses reported in this manuscript. 
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happiness reports as our criteria rather than within-person-centered happiness reports (for this 

model, we used the original raw acoustic factor scores as predictors). For this latter analysis, we 

rounded raw state happiness reports to the nearest integer to yield a succinct set of classification 

categories. A total of 42% (1,639) of raw happiness reports were at the scale midpoint of 3, 

making this our chance level of accuracy in this analysis. 

We present results across three metrics: (a) raw accuracy, or the proportion of audio 

recordings for which the random forests algorithm predicted the correct happiness value; (b) 

Pearson correlation between the set of algorithm-predicted happiness ratings and self-report 

happiness ratings; and (c) Cohen’s Kappa between the set of algorithm-predicted happiness 

ratings and self-report happiness ratings, which serves as an index of predictive accuracy above 

and beyond the base rate with which each level of happiness was reported. We also report raw 

accuracy for each specific integer value of self-report happiness (e.g., -1 or 0 in the analyses 

using within-person happiness scores; 2 or 3 in the analyses using raw happiness scores). 

Except where noted, all statistics reported below for machine learning models are 

averages taken from 1,000 bootstrapped analyses, for which we used 10-fold cross-validation to 

prevent overfitting our model to one subset of our data. We report 95% confidence intervals for 

all statistics, which were computed empirically based on the distribution of these bootstrapped 

resamples. 

Can we predict state happiness from acoustic features of the voice? Our ability to 

predict within-person fluctuations in state happiness from acoustic features of the voice was 

limited across all three machine learning algorithms (see Tables 1a-1c). Mean predictive 

accuracy for random forests (56%, CI = [50% to 61%]), neural networks (49%, CI = [45% to 

54%]), and support vector machines (53%, CI = [48% to 56%]) did not meaningfully exceed 
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chance (53%; recall that chance was set at this value because 53% of all recordings corresponded 

to a happiness report of 0, or average happiness). 

These results indicate that random forests were the best-performing algorithm of the three 

we employed. Corroborating this finding, for the random forests algorithm, the Pearson 

correlation between model-predicted happiness and self-report happiness (r = .13, CI = [.001 to 

.26]) was positive and statistically greater than zero, although it was weak in magnitude. 

Likewise, Cohen’s kappa between model-predicted happiness and self-report happiness (k = .12, 

CI = [.05 to .20]) was also positive and statistically greater than zero, but again was weak in 

magnitude (see Table 1a). This final result indicates that, although the random forests algorithm 

accurately predicted self-reported state happiness above what would could be achieved by base 

rate information alone, predictive accuracy was weak. In contrast, for both neural networks and 

support vector machines, the Pearson correlation and Cohen’s Kappa between model-predicted 

happiness and self-report happiness were lower than those values observed for random forests, 

and often did not statistically exceed zero (see Tables 1b-1c). 

Examining accuracy for each individual happiness value shed additional light on each 

mode’s performance. For the random forests algorithms, although accuracy for happiness reports 

of 0 (i.e., average happiness) was very high (95%, CI = [91% to 98%]) accuracy for happiness 

reports of -1 and 1 was relatively low (10% and 15%, respectively) and accuracy for -2 and 2 

was 0% (see Table S3). Neural networks showed somewhat lower accuracy for happiness reports 

of 0 (78%, CI = [70% to 86%]) but somewhat higher accuracy for happiness reports of -1 and 1 

(16% and 21%) and -2 and 2 (3% and 1%; see Table S5). This pattern suggests that, compared to 

random forests, neural networks appeared to better predict values of happiness other than 

average happiness, but this did not result in an overall greater predictive validity when 

examining mean accuracy, correlation, and kappa. In contrast, support vector machines showed 
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extremely high accuracy for happiness reports of 0 (99%) and near-zero predictive accuracy for 

all other happiness reports (<3%; see Table S4). This pattern suggests that, compared to random 

forests and neural networks, support vector machines provided little predictive validity aside 

from consistently predicting that people felt average levels of state happiness. 

Recall that “accuracy” here is defined as when the model predicts the same value of 

happiness as was given via self-report. When accuracy is calculated for a given value of self-

reported happiness, it partly reflects the frequency with which the algorithm predicted this value, 

so high accuracy could be achieved simply by an algorithm that always predicts this value 

(though this would lead to low accuracy for other values of self-reported happiness). Given that 0 

was by far the most commonly reported happiness level and was itself reported for over half of 

the recordings (53%), the high accuracy for this happiness level across all three algorithms could 

reflect genuine insight provided by the acoustic features (i.e., most people sound about average 

in terms of happiness at most moments) or it could simply reflect the model frequently predicting 

the modal happiness level due to the absence of useful distinguishing information (i.e., using 

base rate information). Our data do not allow us to answer this question. 

Does the random forests analysis perform better with all within-person-centered 

information or all raw-score information? We first examined whether accuracy indices were 

higher in machine learning models that relied on (a) within-person-centered predictors and 

criteria or (b) raw-score predictors and criteria (see Tables 1a-c). Across each machine learning 

algorithm, all three accuracy indices were descriptively lower in a model in which within-person-

centered acoustic features were used as predictors and within-person-centered happiness reports 

were used as criteria (e.g., for random forests models, accuracy = 53%, CI = [50% to 56%]; r = 

.05, CI = [-.04 to .17]; k = .02, CI = [-.21 to .05]) compared to primary model (e.g., for random 
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forests models, accuracy = 56%, CI = [50% to 61%]; r = .13, CI = [.001 to .26]; k = .12, CI = 

[.05 to .20]). 

On the other hand, across each machine learning algorithm, all three accuracy indices 

were descriptively higher relative to chance in a model in which raw happiness reports were used 

as a criterion compared to our primary acoustic model (e.g., for random forests models, accuracy 

= 48%, CI = [44% to 51%]; r = .21, CI = [.13 to .28]; k = .16, CI = [.10 to .21]; recall that chance 

accuracy for this model was 42%). This suggests that our machine learning algorithms provided 

a small amount of predictive insight into state happiness when it used between-person (rather 

than purely within-person) variation in happiness and acoustic features. In the case of random 

forests models, the observed correlation between algorithm-predicted and self-reported happiness 

was r = .21, equivalent to a moderate (and typical) effect size in social psychology (Richard, 

Bond, & Stokes-Zoota, 2003), and significantly greater than the correlation produced by our 

primary random forests model. Furthermore, this correlation, as well as both the raw accuracy 

(48%) and kappa (k = .16) produced by this random forests model, were above-chance. Although 

these findings do not speak to our primary research question of whether it is possible to predict 

within-person fluctuations in state happiness from acoustic analysis, they do testify to the overall 

validity of the machine learning algorithms employed in this study: This method is capable of 

uncovering a link between acoustic features and happiness when it is given sufficient 

information (in this case, information pertaining to between-person variability). 
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Table 1a: Random forests analyses predicting state happiness from acoustic features (Study 1) 

Notes: N = 3,926 observations, 502 participants 
Entries in each cell represent M [95% CI] 
Raw: Uncentered scores on a given variable 
Within-person-centered: Person-mean centered scores on a given variable 
Accuracy: Percentage of audio recordings for which random forests predicted the correct level of 
happiness 
Correlation: Pearson correlation between the set of predicted happiness ratings and self-report 
happiness ratings 
Kappa: Cohen’s Kappa between the set of predicted happiness ratings and self-report happiness 
ratings 
a When criterion is within-person-centered happiness, chance accuracy is 53% 
b When criterion is raw happiness, chance accuracy is 42% 

  

 Accuracy Correlation Kappa 
Criterion: Within-person-centered happiness 

Predictors: Raw acoustic features 
56a [50, 61] .13 [.001, .26] .12 [.05, .20] 

Criterion: Within-person-centered happiness 
Predictors: Within-person-centered acoustic 

features 

53a [50, 56] .05 [-.04, .17] .02 [-.02, .05] 

Criterion: Raw happiness 
Predictors: Raw acoustic features 

48b [44, 51] .21 [.13, .28] .16 [.10, .21] 
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Table 1b: Support vector analyses predicting state happiness from acoustic features (Study 1) 

Notes: N = 3,926 observations, 502 participants 
Entries in each cell represent M [95% CI] 
Raw: Uncentered scores on a given variable 
Within-person-centered: Person-mean centered scores on a given variable 
Accuracy: Percentage of audio recordings for which support vector machines predicted the 
correct level of happiness 
Correlation: Pearson correlation between the set of predicted happiness ratings and self-report 
happiness ratings 
Kappa: Cohen’s Kappa between the set of predicted happiness ratings and self-report happiness 
ratings 
a When criterion is within-person-centered happiness, chance accuracy is 53% 
b When criterion is raw happiness, chance accuracy is 42% 

  

 Accuracy Correlation Kappa 
Criterion: Within-person-centered happiness 

Predictors: Raw acoustic features 
53a [48, 56] .01 [-.10, .11] .01 [-.003, .02] 

Criterion: Within-person-centered happiness 
Predictors: Within-person-centered acoustic 

features 

53a [46, 57] -.06 [-.13, .04] .001 [.00, .002] 

Criterion: Raw happiness 
Predictors: Raw acoustic features 

43b [41, 48] .10 [.01, .18] .05 [.02, .09] 
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Table 1c: Neural network analyses predicting state happiness from acoustic features (Study 1) 

Notes: N = 3,926 observations, 502 participants 
Entries in each cell represent M [95% CI] 
Raw: Uncentered scores on a given variable 
Within-person-centered: Person-mean centered scores on a given variable 
Accuracy: Percentage of audio recordings for which neural networks predicted the correct level 
of happiness 
Correlation: Pearson correlation between the set of predicted happiness ratings and self-report 
happiness ratings 
Kappa: Cohen’s Kappa between the set of predicted happiness ratings and self-report happiness 
ratings 
a When criterion is within-person-centered happiness, chance accuracy is 53% 
b When criterion is raw happiness, chance accuracy is 42% 

 Accuracy Correlation Kappa 
Criterion: Within-person-centered happiness 

Predictors: Raw acoustic features 
49a [45, 54] .06 [-.03, .16] .09 [.03, .15] 

Criterion: Within-person-centered happiness 
Predictors: Within-person-centered acoustic 

features 

48a [43, 54] .05 [-.05, .15] .04 [-.02, .11] 

Criterion: Raw happiness 
Predictors: Raw acoustic features 

41b [35, 47] .17 [.06, .28] .12 [.04, .20] 
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Ruling out alternative explanations for a null effect. Given that we found limited 

evidence for a predictive link between acoustic features and within-person fluctuations in 

state happiness, we ran several additional analyses to rule out artifactual explanations for 

these null effects. We selected random forests for the majority of these analyses, as well as 

analogous tests in Studies 2 and 3, because it was consistently the best-performing machine 

learning algorithm in our primary machine learning analyses. 

First, we examined if the null effects were due to a limitation in the type of acoustic 

features we extracted from the audio recordings. Although the eGeMAPS is a relatively 

parsimonious set of features—it consists of select acoustic features that have been 

empirically or theoretically linked with emotion—it is possible that a broader set of acoustic 

features might yield more insight into within-person fluctuations in momentary happiness. 

We therefore re-ran our primary analyses using the 2016 Interspeech Computational 

Paralinguistic Challenge set of 6,737 acoustic features. The Computational Paralinguistic 

Challenge is held annually at the Interspeech conference on spoken language processing. 

Importantly, prior Interspeech Challenge feature sets have been shown to slightly out-

perform the eGeMAPS at detecting levels of emotional valence (analogous to levels of 

happiness) from audio recordings (Eyben, Scherer, et al., 2016). The 2016 Interspeech feature 

set is the most recent set available for use in openSMILE. We therefore re-ran our machine 

learning analyses using these acoustic features as predictors. 

Second, we tested whether the limited predictive accuracy we observed was due to 

our decision to round within-person happiness reports to the nearest integer, which could 

conceivably result in the loss of valuable information. To address this issue, we re-ran the 

random forests analyses reported above while using continuous, non-rounded, within-person-

centered happiness reports as our criteria (random forests can be implemented for both 

categorical and continuous outcomes; https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html). 
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Third, we examined if the null effects were due to a limitation in the type of audio 

recordings we used. In Study 1, we combined audio recordings in which participants 

described the events of their day and those in which participants described a relatively neutral 

photograph in a single analysis so as to maximize statistical power. Yet, it is possible that 

descriptions of neutral photographs contain little signal relevant to state happiness—

particularly compared to descriptions of the events of participants’ days (e.g., which may 

have included happy or sad events)—and therefore that using them in our machine learning 

analysis artificially lowered accuracy. To address this issue, we re-ran our primary analysis 

separately for each type of audio recording. 

Finally, we tested whether the null effects were due to a limitation in machine 

learning analyses. Our rationale for using machine learning was that these algorithms can 

find more nuanced links between predictor and outcome variables compared to regression 

models typically used by psychologists. Yet, in light of its poor performance, machine 

learning algorithms may not have been the optimal analysis for the task of predicting state 

happiness from acoustic features. To address this issue, we examined two alternative analytic 

approaches for predicting state happiness from acoustic features: (a) conventional regression 

and correlation and (b) asking humans. 

Analyses with a larger set of acoustic features. We re-ran our primary machine 

learning analyses with all three algorithms, predicting within-person state happiness reports 

from raw-score acoustic features taken from the 2016 Interspeech Challenge set. Unlike in 

our machine learning analyses using the eGeMAPS, we did not use factor analysis to reduce 

the dimensionality of the Interspeech feature set, because the number of features (N = 6,737) 

was greater than the number of cases in our data set (N = 3,926). Mean predictive accuracy 

for random forests (53%, CI = [50% to 57%]), neural networks (40%, CI = [16% to 59%]), 

and support vector machines (53%, CI = [48% to 57%]) did not meaningfully exceed chance 

(53%) nor did these accuracy values exceed those found when the eGeMAPS acoustic 
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features were used as predictors (see Tables 1a-1c). Pearson correlations and Cohen’s kappa 

between algorithm-predicted happiness and self-reported happiness were small in magnitude 

and did not exceed those found when the eGeMAPS were used as predictors (random forests: 

r = .03, CI = -.08, .13]; k = .03, CI = .002, .06]; neural networks: r = -.001, CI = -.13, .13]; k 

= .00, CI = -.02, .02]; support vector machines: r = .06, CI = .06, .07]; k = .001, CI = .00, 

.01]).2 These results suggest that the limited predictive validity found in our primary analyses 

was not due to a limitation in the relatively parsimonious eGeMAPS feature set. 

Analyses with continuous outcome measure. We re-ran our primary analyses using 

the random forest regression algorithm, predicting within-person state happiness reports from 

raw-score acoustic features. In this analysis, state happiness reports were left in their original 

decimal form and were not rounded to the nearest integer. This analysis yielded little 

predictive insight (mean adjusted R2 = .01, CI = [-.02, .03]), indicating that the acoustic 

features explained an average of only 1% of the variance in state happiness when correcting 

for the large number of predictors in the model. This finding suggests that the limited 

predictive accuracy observed above was not due to our decision to round happiness scores to 

the nearest integer. 

Analyses with different types of audio recordings. We re-ran our primary random 

forests model separately for audio recordings involving descriptions of the events of 

participants’ days and audio recordings involving descriptions of neutral photographs (n = 

1,963 observations for each type). Each accuracy index was higher for our original acoustic 

model that included both types of recordings (accuracy = 56%, CI = [50% to 61%]; r = .13, 

CI = [.001 to .26]; k = .12, CI = [.05 to .20]) compared to an acoustic model with only 

recordings of the participant retelling the day’s events (accuracy = 51%, CI = [47% to 55%]; 

r = -.03, CI = [-.18 to .13]; k = .00, CI = [-.05, .05]) or an acoustic model with only 

                                                
2 Support vector machines analyses were run with 100 bootstrapped resamples due to limitations on computer 
processing capacity. 
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recordings of the participant describing a picture (accuracy = 51%, CI = [42% to 56%]; r = -

.01, CI = [-.14 to .19]; k = .01, CI = [-.04 to .07]). Of course, by examining only one type of 

recording, we cut our sample size in half, and random forests analyses perform better with 

larger sample sizes because they have more information with which to learn classification 

distinctions. Yet these analyses do suggest that the relative lack of predictive accuracy we 

observed in our primary analysis above was not due to a disproportionate lack of signal in 

either the daily events or picture recordings. 

Can conventional analyses better predict state happiness from acoustic features? To 

answer this question, we performed two analyses. For each of these analyses, we did not 

round within-person-centered state happiness reports to the nearest integer, because general 

linear models are typically used with continuous outcome measures. 

First, to test whether the entire set of acoustic features could collectively provide 

insight into state happiness, we predicted within-person-centered state happiness reports from 

each of the 17 acoustic factors that we used as predictor variables in our machine learning 

models, using multilevel modeling to account for the fact that state happiness reports were 

nested within days (i.e., participants made one state happiness report each day, which 

corresponded to up to two audio recordings made at the same experience-sampling 

assessment), which were nested within participants. We compared a baseline model (i.e., 

which included only a random intercept as well as a fixed and random slope to account for 

any possible effect of the day on which each recording was completed) with an acoustic 

model (i.e., in which the 17 acoustic factors were added to the baseline model as predictors). 

To index model fit, we used the AIC, which penalizes more complex models and for which 

smaller values indicate better fit; the AIC for the acoustic model (8,133.5) was higher than 

for the baseline model (8,001.4) This result therefore suggests that acoustic factors did not 

improve our ability to predict state happiness. To provide an estimate of effect size, we 

calculated approximate R2, a statistic that reflects the proportion of reduction in the residual 
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variance between the baseline and acoustic model (LaHuis, Hartman, Hakoyama, & Clark, 

2014). Residual variance was s2 = .398 in the baseline model and s2 = .397 in the acoustic 

model, indicating that adding acoustic features to the model reduced residual variance by 

only .002 percent. 

Next, to test whether individual acoustic features were predictive of state happiness, 

we computed the bivariate correlations between scores on each of the 88 acoustic features 

and within-person-centered state happiness reports. These correlations were very weak 

(average absolute value: r = .02, SD = .02; Range = -.06 to .05; see Table S6). When applying 

a Bonferroni correction to account for the large number of correlations we tested (α = .05/88 

= .0006), only one of these 88 correlations remained significant, even though with our large 

sample size any correlation greater than |.054| was significant. This single significant 

correlation was between mean momentary happiness and mean jitter (i.e., the extent to which 

pitch fluctuates in consecutive speech periods; r = -.06, p = .0004). The strongest predictors 

of momentary happiness were mean jitter, mean mel-frequency cepstral coefficient 1 (r = 

.05), and seven features with absolute value correlations of r = .04 (e.g., standard deviation of 

pitch, standard deviation of jitter, harmonics-to-noise ratio). 

Together, these results suggest that conventional multi-level regression and 

correlational analyses involving the total set of acoustic features, as well as individual 

acoustic features, provide almost no insight into the link between vocal acoustics and state 

happiness, indicating that our failure to find substantial predictive accuracy when using 

machine learning algorithms was not due to a limitation inherent to this type of analysis. 

Can human coders better predict state happiness from acoustic features? To test 

this question, we randomly selected a subset of 203 acoustic recordings drawn from 25 

participants (5% of the total sample). Two research assistants were briefed on the procedure 

for the study, and each was then asked to predict the within-person-centered level of state 

happiness that corresponded to each recording in the subset (i.e., -2 to +2). We made every 
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effort to provide coders with all of the information that a computer could conceivably use to 

inform a machine learning analysis. Participants were given base rate information responses 

across the sample (e.g., they were told that over half of the recordings corresponded to a 

happiness report of 0) and were encouraged to use this information when making their 

predictions. Importantly, the distribution of state happiness reports in this subsample did not 

significantly differ from the distribution of the overall sample (-2: 2 recordings/1%; -1: 48 

recordings/24%; 0: 103 recordings/51%; 1: 50 recordings/25%; 2: 0 recordings/0%; 𝜒2 (4) = 

4.71, p = .45). Coders were also instructed to listen to all recordings made by a single 

participant once, before listening a second time to make their predictions; these instructions 

were meant to allow participants to better estimate state happiness around each participants’ 

mean. Of course, the human coders also had access to information that the computer did not 

have, namely the content of participants’ speech; in light of some work showing that the 

words people use are indicative of emotion (e.g., Tackman et al., 2018; c.f., Sun, Schwartz, 

Son, Kern, & Vazire, 2018), we would predict that this imbalance should provide human 

coders with an advantage over the machine learning algorithm (see page 12 of online 

supplement for full coding instructions). 

Each coder performed poorly at this task. Predictive accuracy was 40% and 38% for 

the two coders, respectively, which is well below chance in this subset of audio recordings 

(i.e., 51%), as well as well below the predictive accuracy achieved by our random forests and 

neural network models (56% and 53%, respectively). Cohen’s kappa between self-report 

happiness reports and each coder’s set of predicted happiness reports were below zero (ks = -

.05 and -.08) and Pearson correlations between self-report and predicted happiness reports 

were near-zero (rs = -.02 and .04). Each of these results indicated worse performance than 

our random forests and neural network models, and analogous performance to our support 

vector machine models (see Tables 1a-1c). Furthermore, although coders were much less 

accurate than each machine learning algorithm at predicting happiness levels of 0 (i.e., 
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average happiness; average coder accuracy = 66%; machine learning accuracies = 78% to 

.99%), accuracy at all other happiness levels did not significantly differ between coders and 

the machine learning algorithms. 

These results together suggest that human coders were no better than our machine 

learning algorithms at predicting state happiness from acoustic features of the voice. If 

anything, human coders performed worse at this task than machine learning algorithms, 

primarily because they made less use of base rate information, leading to poorer accuracy at 

classifying average levels of state happiness. These results do not imply that the computer 

was substantially better than humans at predicting state happiness—after all, our machine 

learning analyses yielded very weak predictive accuracy on the whole—nor do they imply 

that human coders could never “hear happiness” in acoustic recordings under any 

circumstances. These results do suggest, however, that humans did not have any insight into 

people’s relative state-level happiness based on what they said and how they said it in this 

sample of recordings and that our failure to find substantial predictive accuracy was therefore 

not due to a limitation in the machine learning analyses we used. 

Study 2 

In Study 1, we found little evidence that within-person fluctuations in state happy 

mood can be predicted from acoustic vocal features, using multiple machine learning 

algorithms, multiple acoustic feature sets, and both categorical and continuous happy mood 

reports as outcomes. Neither conventional regression analyses nor human coders provided 

more insight into state happy mood than did machine learning algorithms. Yet, in analyses 

that relied on between-person variance, machine learning algorithms yielded well-above-

chance prediction of state happy mood from acoustic features—and effect sizes comparable 

to what is typically seen in social psychology—testifying to the validity of this analytic 

method when sufficient signal is available. 
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However, our ability to predict state happy mood could have been limited by the 

number of cases used to train our machine learning algorithms—with larger sample sizes, 

these algorithms have more opportunities to learn what distinguishes happier or unhappier 

mood. In light of this possibility, in Study 2 we harnessed an independent data set of audio 

recordings that was nearly eighteen times as large as that which we used in Study 1. 

Method 

Participants. Our sample was taken from a large study in which 63,827 individuals 

provided experience-sampling reports about their happiness and voice samples across an 

average of 30 days using a multiplatform smartphone application. Our final sample consisted 

of 19,412 participants (Mage = 26.96, SD = 9.34; 63% women; 91% French, 4% Belgian, 3% 

Swiss, 2% Other). Procedures for this study received ethical approval from the University 

Pompeu Fabra, Barcelona, Institutional Review Board. 

Procedure. Participants volunteered for the study by downloading “58 seconds”, a 

free mobile application for iPhone and Android phones dedicated to measuring various 

aspects of users’ well-being through short questionnaires presented at random times 

throughout the day. At initial signup, participants answered demographic questions including 

gender, age, and country of residence. Next, participants were asked which days of the week 

and within what time windows they wished to receive questionnaire requests (default = 7 

days/week from 9:00 AM to 10:00 PM). Participants could also customize the number of 

daily questionnaire requests they wanted to receive (default = 4, minimum = 1, maximum = 

12). The application algorithm divided each participant’s day into a number of intervals equal 

to the number of samples to be requested, and a random time was chosen within each 

interval. The minimum time between two questionnaires was set to 1 hour and random 

sampling was ensured through a notification system that did not require users to be connected 

to the internet. New times were generated each day and were independently randomized for 

each participant. At each of these times, participants received a notification on their mobile 
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phone informing them that a new questionnaire was available; some of these questionnaires 

included our two key tasks: reporting state happiness and making an audio recording. 

State happiness. Participants were asked to rate their current happiness on a slider 

from 0 (very unhappy) to 100 (very happy; M = 63.4, SD = 23.8). Note that this measure 

differs conceptually from that used in Study 1 (and Study 3) in that it represents happiness 

bimodally (i.e., running from extreme unhappiness to extreme happiness) rather than 

unimodally (i.e., running from lack of happiness to extreme happiness). Similarly to Study 1, 

however, these state happiness reports were within-person-centered, rounded to the nearest 

multiple of 10 and divided by 10 (e.g., a score of 53 became 5, whereas a score of 58 became 

6; M = .04, SD = 1.42; range: -9 to 8). We obtained 1,541,097 state happiness reports across 

the entire study. 

Audio recordings. Participants were asked to provide a voice sample by recording 

directly to the app the following sentence: “Ceci est un échantillon de ma voix aujourd’hui” 

[In English: “This is a sample of my voice today”]. We obtained 99,207 audio recordings 

across the entire study. 

Due to a technical error, for each audio recording we retained accurate date stamps 

but not accurate time stamps. To ensure that state happiness reports and audio recordings 

were made at the same time, we selected all pairs of state happiness reports and audio 

recordings that were unique to one participant and one day. For example, if a participant 

made only one state happiness report and one audio recording on February 17, 2013, we 

could be certain that these events occurred at the same time point, and this data point would 

be included in our analysis. In contrast, if the same participant had made two state happiness 

reports and two audio recordings on that same day, we could not determine which state 

happiness report corresponded to which audio recording, and these data points would not be 

included in our analysis. This criterion left us with 71,166 pairs of corresponding state 

happiness reports and audio recordings. 
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As in Study 1, we used openSMILE to extract the 88 acoustic features included in the 

eGeMAPS from these 71,166 audio recordings. One hundred fifty-seven (0.2%) recordings 

could not be read by openSMILE, leaving 71,009 recordings for inclusion in our analysis (M 

= 3.66 per participant; SD = 4.31). As in Study 1, we found that a 17-factor solution best 

characterized these 88 features (see Table S7 in online supplement for factor loadings). We 

again saved each participant’s score for each of these 17 factors to use as our primary 

predictor variables. As in Study 1, two of the first three factors in this solution appeared to 

reflect variability in loudness (factor 1) and pitch (factor 2), whereas factor 3 showed its 

highest loading from a feature the rate of speech per second in the recording. 

Results 

Analytic overview. We followed the same analytic strategy as in Study 1, with the 

following exceptions. First, of the entire set of within-person-centered state happiness 

reports, 39% (27,716) were rounded to a score of 0 (i.e., average happiness), making this our 

chance level of accuracy for analyses involving within-person-centered happiness reports. 

Second, 23% (16,307) of raw state happiness reports were rounded to 5, which was the most 

frequently reported happiness level, making this our chance level of accuracy for analyses 

involving raw happiness reports. 

Can we predict state happiness from acoustic features of the voice? Predictive 

accuracy was again weak, even more so than in Study 1 (see Tables 2a-c). Mean predictive 

accuracy did not exceed chance (39%) for random forests (38.6%, CI = [37.9% to 39.5%]), 

neural networks (38.8%, CI = [37.9% to 39.7%]), or support vector machines (39.0%, CI = 

[38.5% to 40.0%]).3 For the random forests algorithm, Cohen’s kappa between model-

predicted and self-reported happiness scores did exceed zero but was extremely small in 

magnitude (k = .007, CI = [.002 to .012]). However, Cohen’s kappa for neural networks and 

                                                
3 Support vector machines analyses were run with 50 bootstrapped resamples due to limitations in computer 
processing capacity. 
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support vector machines did not statistically exceed zero (k’s = .002 and .000, respectively) 

and across each algorithm, the Pearson correlation between model-predicted and self-reported 

happiness did not exceed zero (rs < .005). Furthermore, although accuracy for happiness 

reports of 0 (i.e., average happiness) was near ceiling for each algorithm (> 96%)—likely 

indicating use of base-rate information—accuracy for all other happiness levels was less than 

4% and frequently was 0% (see Tables S8-S10). Unlike Study 1, we did not observe large or 

meaningful differences in predictive accuracy across machine learning models that relied on 

within-person centered happiness reports and acoustic features or on raw happiness reports 

and acoustic features (see Tables S8-S10).  
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Table 2a: Random forests analyses predicting happiness from acoustic features (Study 2) 

Notes: N = 71,009 observations, 19,412 participants 
Entries in each cell represent M [95% CI] 
Raw: Uncentered scores on a given variable 
Within-person-centered: Person-mean centered scores on a given variable 
Accuracy: Percentage of audio recordings for which random forests predicted the correct 
level of happiness 
Correlation: Pearson correlation between the set of predicted happiness ratings and self-report 
happiness ratings 
Kappa: Cohen’s Kappa between the set of predicted happiness ratings and self-report 
happiness ratings 
a When criterion is within-person-centered happiness, chance accuracy is 39% 
b When criterion is raw happiness, chance accuracy is 23%

 Accuracy Correlation Kappa 
Criterion: Within-person-centered happiness 

Predictors: Raw acoustic features 
38.6a [37.5, 39.5] -.001 [-.027, .026] .007 [.002, .012] 

Criterion: Within-person-centered happiness 
Predictors: Within-person-centered acoustic 

features 

38.2a [36.9, 39.2] .017 [-.007, .041] .027 [.017, .036] 

Criterion: Raw happiness 
Predictors: Raw acoustic features 

22.3b [21.5, 23.2] .111 [.091, .129] .024 [.016, .031] 
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Table 2b: Support vector analyses predicting happiness from acoustic features (Study 2) 

Notes: N = 71,009 observations, 19,412 participants 
Entries in each cell represent M [95% CI] 
Raw: Uncentered scores on a given variable 
Within-person-centered: Person-mean centered scores on a given variable 
Accuracy: Percentage of audio recordings for which support vector machines predicted the 
correct level of happiness 
Correlation: Pearson correlation between the set of predicted happiness ratings and self-report 
happiness ratings 
Kappa: Cohen’s Kappa between the set of predicted happiness ratings and self-report 
happiness ratings 
a When criterion is within-person-centered happiness, chance accuracy is 39% 
b When criterion is raw happiness, chance accuracy is 23%

 Accuracy Correlation Kappa 
Criterion: Within-person-centered happiness 

Predictors: Raw acoustic features 
39.0a [38.5, 40.1] .004 [-.026, .023] .000 [-.0003, .0003] 

Criterion: Within-person-centered happiness 
Predictors: Within-person-centered acoustic 

features 

39.0a [38.1, 40.3] .002 [-.013, .021] .001 [.0004, .003] 

Criterion: Raw happiness 
Predictors: Raw acoustic features 

21.9b [21.7, 23.8] .042 [.024, .056] .003 [.001, .005] 
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Table 2c: Neural network analyses predicting happiness from acoustic features (Study 2) 

Notes: N = 71,009 observations, 19,412 participants 
Entries in each cell represent M [95% CI] 
Raw: Uncentered scores on a given variable 
Within-person-centered: Person-mean centered scores on a given variable 
Accuracy: Percentage of audio recordings for which neural networks predicted the correct 
level of happiness 
Correlation: Pearson correlation between the set of predicted happiness ratings and self-report 
happiness ratings 
Kappa: Cohen’s Kappa between the set of predicted happiness ratings and self-report 
happiness ratings 
a When criterion is within-person-centered happiness, chance accuracy is 39% 
b When criterion is raw happiness, chance accuracy is 23%

 Accuracy Correlation Kappa 
Criterion: Within-person-centered happiness 

Predictors: Raw acoustic features 
38.8a [37.9, 39.7] .004 [-.020, .028] .002 [-.002, .006] 

Criterion: Within-person-centered happiness 
Predictors: Within-person-centered acoustic 

features 

37.3a [36.1, 38.5] .016 [-.011, .044] .036 [.020, .052] 

Criterion: Raw happiness 
Predictors: Raw acoustic features 

22.5b [21.6, 23.5] .094 [.060, .122] .018 [.010, .027] 
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Ruling out alternative explanations for a null effect. As in Study 1, we tested 

whether our decision to round happiness reports to the nearest integer hindered our ability to 

gain predictive insight into state happiness. Results again showed that random forests 

analyses using continuous happiness reports as a criterion did not yield meaningful predictive 

accuracy (see pages 20-21 of online supplement). Also, as in Study 1, we tested whether 

conventional regression and correlation provided more insight into the link between acoustic 

features and state happiness. Results again showed that the entire set of acoustic factors, as 

well as individual acoustic features, did not provide insight into momentary happiness (see 

pages 21-22 of online supplement).4 

Study 3 

In Studies 1 and 2, we found little evidence that state happy mood (measured both 

unimodally and bimodally) could be predicted from acoustic vocal features regardless of the 

type of audio used (i.e., one-minute monologues and single-sentence utterances). These 

findings emerged even when we used a sample size of over 71,000 recordings to train our 

machine learning models. Across both studies, conventional analyses provided no insight into 

state happy mood than machine learning. 

However, it is possible that acoustic vocal features alone are not the best acoustic 

source to use for the goal of predicting state happy mood. The activities people engage in are 

linked to their state happy mood (e.g., Kahneman, Krueger, Schkade, Schwarz, & Stone, 

2004) and many activities could shape an individual’s ambient acoustic environment (e.g., 

socializing [vs. being alone] could increase the loudness of an audio recording). In light of 

this possibility, in Study 3 we tested whether we could predict state happy mood using audio 

                                                
4 Unlike Study 1, we did not conduct analyses with the Interspeech Challenge feature set due to limitations in 
computer processing capacity. Also, unlike Study 1, we did not conduct an analysis with human coders. 
However, given the extremely brief nature and homogeneous content of the audio recordings used in Study 2, as 
well as the near-zero predictive accuracy we observed in our primary machine learning models, we deemed it 
extremely unlikely that either of these analyses would provide predictive accuracy into state happy mood. 
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recordings that involved all ambient sounds including the participants’ speech, other people’s 

speech, and sounds that naturally occurred in participants’ environment. 

Method 

Participants. Four hundred and thirty-four students from Washington University in 

St. Louis enrolled in the Personality and Interpersonal Roles Study (PAIRS; Vazire et al., 

2017). Participants were compensated with money and entry into a lottery (with a higher 

chance of winning if they completed more ESM reports). The final sample with usable audio 

for this study included 283 participants (68% women; Mage = 19.10, SD = 1.73; 54% 

Caucasian, 25% Asian, 10% Black, 6% Hispanic; 5% Other). Note that portions of this data 

(i.e., the same participants, audio recordings, and happiness reports) have been used in other 

papers to test hypotheses that differ from the ones tested in the present manuscript (e.g., 

Edwards & Holtzman, 2017; Sun et al., 2018; Wilson, Thompson, & Vazire, 2016; see online 

supplement for full list of papers that have used the PAIRS data set). Procedures for 

collection of the PAIRS data set received ethical approval from the Washington University in 

St. Louis Institutional Review Board. 

Procedure. The current study was part of a larger project, for which a complete list of 

measures is available at https://osf.io/akbfj/. Participants completed an initial lab assessment 

during which they reported demographics and a one-item trait happiness measure (“I am 

someone who is happy”, 1 = “disagree strongly”, 8 = “neither agree nor disagree”, 15 = 

“agree strongly”, M = 11.35; SD = 2.71). For the next two weeks, a subset of participants 

completed ESM measures of happiness up to four times per day, while wearing an 

unobtrusive audio recording device (the EAR) for the first 6–8 days. 

State happiness. Four times per day for 14 days, participants received a text message 

notification and were emailed a link to a survey that contained a one-item measure of their 

happiness in the target hour (“From [11am–noon/2pm–3pm/5pm–6pm/8pm–9pm], how 

happy were you?”; 1 = “not at all”, 3 = “neither agree nor disagree”, 5 = “very”; M = 3.45, 
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SD = 1.00, in our final sample). As in Studies 1 and 2, these state happiness reports were 

within-person-centered, and then rounded to the nearest integer (M = -.009, SD = 0.86, range 

= -3 to 2). 

Audio recordings. The Electronically Activated Recorder (EAR; Mehl, 2017) was 

programmed to record 30 s audio snippets of participants’ ambient sounds, every 9.5 min 

from 7 a.m.–2 a.m. Participants were encouraged to wear the EAR as much as possible, 

clipped to a waistband or the outside of their clothing (not inside a bag or pocket). Although 

participants had no way to tell when the EAR was recording, they were told that they could 

decide to leave the EAR in a different room if they did not want to wear it at any time for any 

reason. In addition, participants received a compact disk with their recordings so that they 

could listen to and erase any files that they did not want the researchers to hear. Only 99 files 

(0.3% of the sample) were erased, involving 15 participants. 

As in Studies 1 and 2, we used openSMILE to extract the 88 acoustic features 

included in the eGeMAPS from all 32,757 EAR recording that took place between 11am–

12:00pm, 2pm–3pm, 5pm–6pm, or 8pm–9pm (i.e., the hours corresponding to the state 

happiness reports). Eighty-seven of these recordings (0.3%) could not be read by 

openSMILE, leaving 32,670 for analysis. Of these, we retained 15,935 recordings for which 

the corresponding state happiness report was made less than one hour after the target hour 

had ended (i.e., if the state happiness report concerned 11:00am-12:00pm, we retained any 

recording for which the corresponding state happiness report was made before 1:00pm on the 

same day). We made this choice given that people’s ability to accurately recall state emotion 

declines in a matter of hours (Robinson & Clore, 2002). However, we re-ran our analyses 

using a more restrictive criteria—retaining recordings for which the corresponding state 

happiness report was made less than 15 minutes after the target hour had ended—and found 

similar results to the ones reported below. 
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As in Studies 1 and 2, we tested whether the 88 acoustic features could be represented 

by a more parsimonious set of dimensions and this time found that a 14-factor solution best 

characterized the data (Table S12 in online supplement for factor loadings). We subsequently 

saved each participant’s score for each of these 14 factors as our primary predictor variables. 

As in Studies 1 and 2, the first factor in this solution appeared to capture variability in 

loudness, suggesting that loudness is a primary acoustic dimension on which audio 

recordings are classified. Factor 2 appeared to capture variability in frequency of formants 1, 

2, and 3, whereas Factor 3 appeared to capture variability in relative energy or amplitude. 

Next, given that each state happiness report represented a summary report of the 

participant’s happiness during an entire hour which included multiple audio recordings, we 

averaged scores on each acoustic feature for all sound files within the target hour (i.e., if a 

participant had six audio recordings between 11:00am-12:00pm, we took the average of each 

of the 14 acoustic factor scores across those six recordings). This left us with 2,550 hourly 

data points (i.e., one hour on one day for one participant) for which we also had a state 

happiness report to use in our final analyses (M = 9.01 data points per participant; SD = 5.04). 

Results 

Analytic overview. We followed the same analytic strategy as in Studies 1 and 2, 

with the following exceptions. First, of the entire set of within-person-centered state 

happiness reports, 46% (1,164) were rounded to a score of 0 (i.e., average happiness), making 

this our chance level of accuracy for analyses involving within-person-centered happiness 

reports. Second, 35% (897) of raw state happiness reports were at the scale midpoint of 3, 

and this was the most frequently reported happiness level, making this our chance level of 

accuracy for analyses involving raw happiness reports. 

Can we predict state happiness from ambient acoustic sounds? As in Studies 1 

and 2, predictive accuracy was weak (see Tables 3a-c). Across all three machine learning 

algorithms, mean accuracy did not exceed chance (46%), nor did Pearson correlation or 
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Cohen’s kappa between model-predicted and self-reported happiness (random forests 

(accuracy = 43%, CI = 37% to 53%; r = .07, CI = -.05 to .20], k = .02, CI = [-.05, .12]); 

neural networks: accuracy = 46%, CI = 42% to 48%; r = .04, CI = -.04 to .12], k = .002, CI = 

[-.001, .02]), support vector machines (accuracy = 42%, CI = 36% to 48%; r = .07, CI = -.04 

to .17], k = .02, CI = [-.03, .09]). Furthermore, although accuracy for happiness reports of 0 

(i.e., average happiness) was very high for all three algorithms (> 79%), accuracy was 

relatively low for happiness reports of -1 and 1 (< 14% each), and less than 1% for happiness 

reports of -2 and 2 (see Tables S13-S15). As in Study 2, we did not observe large or 

meaningful differences in predictive accuracy across machine learning models that relied on 

within-person centered happiness reports and acoustic features and raw-score happiness 

reports and acoustic features (see Tables S13-S15). 
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Table 3a: Random forests analyses predicting happiness from acoustic features (Study 3) 

Notes: N = 2,550 observations, 283 participants 
Entries in each cell represent M [95% CI] 
Raw: Uncentered scores on a given variable 
Within-person-centered: Person-mean centered scores on a given variable 
Accuracy: Percentage of hourly data points for which random forests predicted the correct 
level of happiness 
Correlation: Pearson correlation between the set of predicted happiness ratings and self-report 
happiness ratings 
Kappa: Cohen’s Kappa between the set of predicted happiness ratings and self-report 
happiness ratings 
a When criterion is within-person-centered happiness, chance accuracy is 46% 
b When criterion is raw happiness, chance accuracy is 35%

 Accuracy Correlation Kappa 
Criterion: Within-person-centered happiness 

Predictors: Raw acoustic features 
43a [37, 53] .07 [-.05, .20] .02 [-.05, .12] 

Criterion: Within-person-centered happiness 
Predictors: Within-person-centered acoustic 

features 

44a [36, 50] .08 [-.02, .20] .03 [-.04, .10] 

Criterion: Raw happiness 
Predictors: Raw acoustic features 

37b [33, 43] .13 [.02, .29] .06 [-.01, .14] 
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Table 3b: Support vector analyses predicting happiness from acoustic features (Study 3) 

Notes: N = 2,550 observations, 283 participants 
Entries in each cell represent M [95% CI] 
Raw: Uncentered scores on a given variable 
Within-person-centered: Person-mean centered scores on a given variable 
Accuracy: Percentage of hourly data points for which support vector machines predicted the 
correct level of happiness 
Correlation: Pearson correlation between the set of predicted happiness ratings and self-report 
happiness ratings 
Kappa: Cohen’s Kappa between the set of predicted happiness ratings and self-report 
happiness ratings 
a When criterion is within-person-centered happiness, chance accuracy is 46% 
b When criterion is raw happiness, chance accuracy is 35%

 Accuracy Correlation Kappa 
Criterion: Within-person-centered happiness 

Predictors: Raw acoustic features 
42a [36, 48] .07 [-.04, .17] .02 [-.03, .09] 

Criterion: Within-person-centered happiness 
Predictors: Within-person-centered acoustic 

features 

46a [39, 52] .03 [-.13, .10] .01 [-.01, .02] 

Criterion: Raw happiness 
Predictors: Raw acoustic features 

37b [33, 43] .14 [.05, .22] .04 [-.02, .14] 
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Table 3c: Neural network analyses predicting happiness from acoustic features (Study 3) 

Notes: N = 2,550 observations, 283 participants 
Entries in each cell represent M [95% CI] 
Raw: Uncentered scores on a given variable 
Within-person-centered: Person-mean centered scores on a given variable 
Accuracy: Percentage of hourly data points for which neural networks predicted the correct 
level of happiness 
Correlation: Pearson correlation between the set of predicted happiness ratings and self-report 
happiness ratings 
Kappa: Cohen’s Kappa between the set of predicted happiness ratings and self-report 
happiness ratings 
a When criterion is within-person-centered happiness, chance accuracy is 46% 
b When criterion is raw happiness, chance accuracy is 35%

 Accuracy Correlation Kappa 
Criterion: Within-person-centered happiness 

Predictors: Raw acoustic features 
46a [42, 48] .04 [-.04, .12] .002 [-.01, .02] 

Criterion: Within-person-centered happiness 
Predictors: Within-person-centered acoustic 

features 

42a [36, 46] .09 [-.05, .21] .03 [-.05, .11] 

Criterion: Raw happiness 
Predictors: Raw acoustic features 

35b [29, 41] .11 [.01, .21] .04 [-.04, .13] 
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Ruling out alternative explanations for a null effect. As in Study 1, we again found 

that random forests analyses using continuous happiness reports as a criterion did not yield 

meaningful predictive accuracy (see pages 20-21 of online supplement). Also, as in Studies 1 

and 2, we again found that conventional regression and correlation analyses provided 

minimal insight into the link between acoustic features and state happiness than did machine 

learning models (see pages 21-22 of online supplement). As in Study 2, we did not re-run 

analyses using the Interspeech Challenge feature set due to the computational burden this 

large feature set introduced. 

In Study 3, we also examined whether the limited predictive accuracy observed above 

was because only a minority of audio recordings contained participants’ speech. The acoustic 

features included in the eGeMAPS, which we used as predictors in our machine learning 

analysis, were developed to capture variability in emotional content of individuals’ speech 

(Eyben, Scherer, et al., 2016). It is therefore possible that these acoustic features could not 

capture variability in state happiness that is potentially reflected in ambient, non-vocal sounds 

often included in EAR files. If so, then including these non-vocal EAR recordings could have 

artificially curtailed the predictive power of our machine learning analysis. 

To rule out this possibility, we re-ran our random forests analyses using only those 

EAR files which contained participants’ speech (although note that these recordings could 

also have contained other people’s speech). Of the 15,935 audio recordings that we used in 

our primary analyses above, 4,447 (28%) contained speech. Following the same procedure as 

above, we saved each participants’ scores on 14 acoustic factors for each of these recordings 

and averaged these factor scores within each hour. This left us with 1,606 hourly data points 

corresponding to a unique state happiness report to use in our final analyses (M = 5.80 hours 

per participant; SD = 3.64), compared to 2,550 in our primary analyses above. Of these 1,606 

participant hours, 43% (703) corresponded to a happiness report of 0 (i.e., average 

happiness), making this the chance level of accuracy for these analyses. 
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As in our primary analyses, the acoustic random forests model using only audio 

recordings that contained speech did not yield any predictive accuracy regarding happiness 

(accuracy = 40%, CI = [35% to 46%]; r = .04, CI = [-.10 to .19]; k = -.002, CI = [-.07, .07]). 

It is worth noting that this analysis was hampered by a reduced sample size compared to our 

primary analysis which included all EAR recordings. In addition, some of these files also 

included speech from the people with whom the participant interacted, which could have 

been less diagnostic of participants’ happiness than participants’ own speech. Nevertheless, 

the fact that we saw no improvement in predictive accuracy in these auxiliary analyses—

along with the null findings in Studies 1 and 2 involving direct speech—suggests that the lack 

of vocal acoustic information in the EAR recordings was likely not the primary factor 

limiting predictive accuracy in the primary analyses. 

General Discussion 

Across three studies, we found little evidence that fluctuations in state happy mood 

could be predicted from acoustic analysis. These results emerged despite using happy mood 

self-reports obtained via intensive smartphone-based experience-sampling as our criteria, 

multiple sets of acoustic features as our predictors (one of which was tailor-made to detect 

emotion), and three cutting-edge machine learning algorithms as our analytic tools. This 

result also emerged regardless of whether happy mood scores were treated as categorical or 

continuous outcome measures and regardless of whether we used as predictors acoustic 

features capturing the voice (Studies 1 and 2) or ambient sounds (Study 3). Furthermore, in 

Study 1, audio recordings were made in private—and therefore participants had no externally 

imposed reasons to enact a certain emotional tone—whereas the recordings in Studies 2-3 

may have taken place in public settings where display rules or other social norms could have 

shaped emotional expression in the voice. Yet, regardless of these differences in the social 

context in which recordings were made, predictive accuracy remained near-zero. We also 

ruled out alternative explanations for these null effects, showing that conventional regression 
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and correlation analyses did not yield any predictive insight into state happy mood (Studies 

1-3), that human coders could not accurately predict state happy mood (Study 1), and that 

machine learning analysis yielded above-chance accuracy when relying on between-person 

variability in happy mood. We observed these null effects despite collecting large samples, 

including one orders of magnitude greater than is typical for psychological studies. 

What Did We Learn? 

The present research suggests that, despite popular claims that computers will soon be 

able to hear our emotions, it does not yet seem possible to automatically predict fluctuations 

in one of the most basic state emotional experiences—happy mood—through acoustic 

analysis. At first blush, this conclusion appears to stand in contrast to two more encouraging 

lines of work in this broad conceptual space. First, recent psychological research has made 

groundbreaking progress in harnessing emergent technologies and big data methodologies 

other than acoustic analysis to automatically predict community and trait happiness using 

social media data (e.g., Dodds et al., 2011; Schwartz et al., 2013; 2014). Second, recent work 

has shown that distinct emotions have distinct vocal signatures, including non-verbal vocal 

bursts (e.g., sighs, gasps, grunts; Cordaro et al., 2016; Sauter et al., 2010) as well as acoustic 

features conveyed via speech (e.g., pitch, energy; Banse & Scherer, 1996; Walbott & Scherer, 

1986), and that machine learning techniques can help automatically distinguish between 

distinct emotion states when they are portrayed by actors via speech (Laukka et al., 2014) and 

manifested as extreme, clinical varieties in conversations (Karam et al., 2014). 

Upon closer examination, however, the present findings are reconcilable with these 

two lines of prior work. Our findings suggest that it is far more challenging to predict 

moment-to-moment variability in levels of happy mood, compared to predicting stable 

community or trait happiness, or compared to differentiating between distinct emotions. This 

is likely because the acoustic differences between the same individual experiencing high vs. 

low happy mood may be very subtle (i.e., within-person variability), whereas differences 
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aggregated across time between two individuals who are typically high vs. low in happiness 

(i.e., between-person variability), and differences between distinct emotions such as anger 

and happiness, may be much larger. Consistent with this perspective, recent work has shown 

that linguistic analysis of speech content during everyday life (as opposed to acoustic 

properties of speech, as in the current research) provides a surprisingly small amount of 

predictive insight into within-person fluctuations in state happiness (Sun et al., 2018). In 

contrast, the predictive correlation obtained in one prior study of trait happiness (e.g., r = .17; 

Kosinski et al., 2013) was similar to that obtained in Study 1 when raw-score acoustic 

features were used to predict raw-score happy mood reports (i.e., an analysis involving 

between-person information; r = .21; see Table 1a).  

It is also worth noting that prior work has shown that fluctuations in valence 

(analogous to fluctuations in happy mood) may covary relatively weakly with specific 

acoustic properties, compared to other emotion dimensions (e.g., arousal, potency; Laukka et 

al., 2005; Pereira, 2000). This may be because variability in valence—particularly pleasant 

levels of valence as were the focus of the current study—may primarily reflect the experience 

of one of multiple distinct positive emotions, each of which may be associated with distinct 

non-verbal vocal bursts profiles (e.g., amusement, relief, contentment; Sauter & Scott, 2007). 

The inability of current algorithms to distinguish between levels of happy mood therefore 

does not preclude future machine learning research from distinguishing between distinct 

emotions such as anger, fear, or disgust, that may be better differentiated via acoustic cues. In 

sum, although it does not seem possible to predict fluctuations in state happy mood via 

acoustic analysis at the present time, our predictive goal diverged from prior work in this 

space in several ways that likely made it less tractable. 

Constraints on Generality and Future Directions 

The samples employed in Studies 1-3 consisted primarily of undergraduate students 

and young adults, albeit from three distinct cultural contexts (Canada, France, and Missouri). 
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We have no reason to believe that the acoustic vocal features associated with fluctuations in 

happy mood would manifest differently in older adults, or individuals from different cultures, 

and therefore expect that our findings would replicate across different participant samples. 

We also replicated our findings using two different strategies for assessing happy mood 

(momentary reports in Studies 1-2; retrospective reports in Study 3), two different acoustic 

feature sets (one relatively parsimonious and one extremely large) and three different 

machine learning algorithms (each of which has been viewed as cutting-edge in the present 

day or recent past). We therefore expect that our findings would replicate across alternative 

means of assessing state happy mood, alternative acoustic feature sets, and alternative 

machine learning algorithms. However, it is entirely possible that features other than, or in 

combination with acoustics may provide more insight into fluctuations in state happy mood 

(e.g., speech content; cf. Kross et al., in press). 

The primary constraint on the generality of these findings—and one that points to 

important future work—concerns the specific properties of audio recordings we used. In 

Studies 1-3, we collected recordings that (a) often involved mundane vocalizations that likely 

did not reflect intense emotion and (b) were very brief in duration (i.e., thin slices). In fact, 

given that the vast majority of happy mood reports across all three studies fell at or within 

one point of participants’ within-person averages, one could argue that the audio recordings 

used in the present research captured relatively subtle fluctuations in happy mood. This 

implies that there may have been insufficient emotional signal in the acoustic recordings we 

used to support predictive accuracy obtained via machine learning algorithms. 

An important future direction is to conduct similar predictive analyses via machine 

learning while using as input audio recordings that convey more intense happy or unhappy 

mood (as in Karam et al., 2014) or conveyed distinct emotions altogether (as in Laukka et al., 

2014). Of course, because intense emotional experiences are relatively rare (Diener, 

Kanazawa, Suh, & Oishi, 2105), audio recordings with more extreme happy mood or distinct 
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emotional reactions may be less representative of the emotional states that people experience 

in their everyday lives. In fact, it may be that most moments in everyday life are likely 

somewhat mundane and that predicting fluctuations in happy mood may be quite difficult 

even with better technology. Even so, if the goal is to automatically assess fluctuations in 

state happy mood at scale—as was the goal of the present work—it will be important to 

demonstrate this predictive power on a set of audio recordings that is representative of the 

intensity and range of fluctuations in happy mood typically experienced in daily life. 

Conclusion 

The present null findings do not preclude the possibility that automatically predicting 

fluctuations in emotional states such as happy mood will someday be possible, particularly 

considering other data sources that could be used to accomplish this task. The present null 

findings do suggest that affective scientists are not ready to automatize the detection of 

“happy moments.” Yet, we look forward to future work that will challenge this conclusion 

and continue to make progress in acoustic analysis of emotion and automated emotion 

detection. 
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